
Poisson Reconstruction
for Global Illumination

on Surfels

Antonio Noack, 09.12.2022

Master Thesis

Inspiration

- Interesting paper from Electronic Arts “Global Illumination Based on Surfels” and

SEED “Hybrid Rendering for Real-Time Ray Tracing”

- Nice looking graphics for real-time, computer simulated games, e.g., like GTA V

- Personal game engine “Rem’s Engine”,

 because graphics can sell game engines (e.g., Unreal Engine) and games

- Open Source implementation

Image from “Global Illumination Based on Surfels” Images from “Towards effortless photorealism through real-time raytracing”

Overview

- BSDFs, Path Tracing
- Global Illumination
- Surfels

- Weights
- Drawing
- Distribution
- Transparency

- Poisson Reconstruction
- Results
- Future Work

Defining Materials: BSDFs

Bidirectional Scattering Distribution Functions

Materials (Unity, Unreal Engine, Blender)

How light interacts with a surface:

- How much light is absorbed, and what colors (which wavelengths)

- How the remaining light is being distributed over the surface hemisphere

Image from Mitsuba Handbook

Path Tracing
Simple method to calculate realistic illumination:

- Start with white color at camera

- Trace ray in scene until emissive surface is found

- At every hit, multiply (tint) color by surface color

- To continue ray, choose exit direction by BSDF

Repeat, and average samples until converged

Path Tracing
Simple method to calculate realistic illumination:

- Start with white color at camera

- Trace ray in scene until emissive surface is found

- At every hit, multiply (tint) color by surface color

- To continue ray, choose exit direction by BSDF

Repeat, and average samples until converged

Path Tracing - Termination

Paths may never find an emissive surface → infinite loop ⚡
→ set an artificial iteration limit + consider path to be completely dark (set color to black)

Path Tracing with limited number of bounces

Global Illumination

Separate color from illumination information

Why?

- Illumination may be much less detailed than surface colors (albedo)

- Illumination computationally expensive, surface colors cheap

How?

- Most materials have multiplicative color term → extract

- Pretend first hit is white, calculate, then multiply illumination by albedo

Color (Sponza)

Global Illumination (Sponza)

Result (Sponza)

Result, GI blurred (Sponza)

GI - Best case

High frequency (detailed) materials, low frequency GI:

- Diffuse materials (absorbing, random ray exit direction)

- Detailed albedo textures

- Normal maps, material mask textures

Masked materials on surfel global illumination

GI - Worst case

High frequency details in GI, few details in color:

- Glass surfaces

- Smooth, reflective surfaces like mirrors, glitter

- Transparent surfaces

- Caustics

Heiner Otterstedt,
https://en.wikipedia.org/wiki/File:Kaustik.jpg

GI with sharp reflections and refractions

Surfels

Surface Elements

- Store spatial, local data, here illumination

- Belong to a surface

- Specific to normal, and surface properties

like roughness, smoothness, BSDF in general

 → weighting function for interpolation needed

Image from “Towards effortless photorealism
through real-time raytracing”

Surfel Weights

Goal is lighting data interpolation without knowledge about other surfels:

Assign weight w(s,p) for each surfel s to each pixel p:

Each surfel is handled with a BSDF matching the original pixel, where it was spawned

 Terms: distance, normal, roughness, specularity

Interpolation formula

Surfel GI without/with weight terms for roughness and specularity

Drawing Surfels in Unity

1) Instanced rendering in Unity requires matrix array

→ large overhead + CPU->GPU data transfer needed

2) Procedural rendering, all surfel data can remain on GPU

Goal: Interpolation of colors (and gradients)

→ sum of (light * weight)s + sum of weights → additive blending on RGB + W (alpha channel)

→ in following shader division by sum of weights ; if weight sum is zero, search neighbor pixels

Interpolation formula

Perf. in Unity 2023.1.0a15; Ryzen 5 2600, RTX 3070

Surfel Distribution

Initial via Fibonacci sphere / projected Hilbert curve

Update: in 16x16 sections, find pixel with lowest weight,

and respawn random surfel there (temporal sample collection)

Non-ideal: high densities mostly remain when moving backwards

Fibonacci sphere / Hilbert curve initialization

Hilbert curve

Surfel dist. after some time with camera movement (Sponza) Dense spot after moving away from wall

Transparency on Surfels

- Spherical Harmonics

- Dithering

- Handling transparent surfaces as

highly angle dependent, like mirrors
Dithered foliage in image from ”GTA V - Graphics Study”

Spherical Harmonics from Inigo Quilez Ghosting on transparent surface

Poisson Reconstruction

Gimp/Photoshop Healing operator:

 Merge foreign features into images

Given base color and gradients, reconstruct the original image
 Often solved iteratively, e.g., with Gauß-Seidel-iteration

Idea from “Gradient Domain Path Tracing”: gradient information has less fireflies, so it is more

stable ~ has less “energy”: only non-zero, if illumination changes

→ should accelerate convergence

Transferring a stripe pattern in GIMP
Image: screenshot from Watch Dogs 2

Results

Working surfel distribution

Weighting scheme on

BSDF-specific surfels works

for colors

Procedural rendering is performant

Surfel distribution after some time with camera movement (Sponza)

http://www.youtube.com/watch?v=2E7uBXz8gl8

Per-Pixel Path Tracing,
comparison with/without Poisson Reconstruction

Surfels vs Per-Pixel

Surfel Gradients: too smooth
Weighting gradients doesn’t work that easily

Surfel Gradients: too smooth
Unsuitable for Poisson Reconstruction

Future Work

- Better gradient calculation for edges, e.g., by averaging sides of edge separately, then summing

Neither sum nor average is correct

- Draw surfels using quads instead of boxes (performance)

- Increase path tracing efficiency, e.g., using ReSTIR (spatiotemporal reservoir resampling)

- More efficient gradients, e.g., by bidirectional gradient domain path-tracing (C++ → Unity

translation needed, plus replacements for dynamic allocations)

- Transparent/extremely rapidly changing regions could be handled with spherical harmonics, and

really smooth reflections using per-pixel PT

- Despawn surfels, where very dense

- Surfel migration by gradient of density

- Handle reflections and direct shadows separately for sharp results

Thank you for your attention

Sources:
Mitsuba Handbook image:
https://www.mitsuba-renderer.org/releases/current/documentation.pdf, sec. 8.2, page 52

”Global Illumination Based on Surfels” image: page 178
Andreas Brinck and Xiangshun Bei and Henrik Halén and Kyle Hayward

“Shiny Pixels and Beyond: Real-Time Raytracing at SEED” image: page 57/58
Tomasz Stachowiak, SEED – Electronic Arts

”GTA V - Graphics Study” image: Adrian Courrèges,
https://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/

Spherical Harmonics image: Inigo Quilez
https://en.wikipedia.org/wiki/File:Spherical_Harmonics.png

https://www.mitsuba-renderer.org/releases/current/documentation.pdf
https://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/
https://en.wikipedia.org/wiki/File:Spherical_Harmonics.png

