Poisson Reconstruction
for Global lllumination
on Surfels

Master Thesis

Antonio Noack, 09.12.2022

Inspiration

- Interesting paper from Electronic Arts “Global lllumination Based on Surfels” and
SEED “Hybrid Rendering for Real-Time Ray Tracing”
- Nice looking graphics for real-time, computer simulated games, e.g., like GTAV
- Personal game engine “Rem’s Engine”,
because graphics can sell game engines (e.g., Unreal Engine) and games
- Open Source implementation

Image from “Global [llumination Based on Surfels” Images from “Towards effortless photorealism through real-time raytracing”

Overview

- BSDFs, Path Tracing
- Global lllumination
- Surfels
- Weights
- Drawing
- Distribution
- Transparency
- Poisson Reconstruction
- Results
- Future Work

Defining Materials: BSDFs

Bidirectional Scattering Distribution Functions

Materials (Unity, Unreal Engine, Blender)

—d

Smooth dielectric material (dielectric)

Smooth diffuse material (diffuse)

Image from Mitsuba Handbook

How light interacts with a surface:

- How much light is absorbed, and what colors (which wavelengths)
- How the remaining light is being distributed over the surface hemisphere

Path Tracing

Simple method to calculate realistic illumination:

Start with white color at camera

Trace ray in scene until emissive surface is found
At every hit, multiply (tint) color by surface color
To continue ray, choose exit direction by BSDF

Repeat, and average samples until converged

diffuse surface == traced path

camera

N

/
/ diffuse surface \\
\

Path Tracing

Simple method to calculate realistic illumination:

Start with white color at camera

Trace ray in scene until emissive surface is found
At every hit, multiply (tint) color by surface color
To continue ray, choose exit direction by BSDF

Repeat, and average samples until converged

diffuse surface = traced path

Camera

//-A\‘
/ N\
/ diffuse surface \\

Path Tracing - Termination

Paths may never find an emissive surface — infinite loop 4

— set an artificial iteration limit + consider path to be completely dark (set color to black)

Path Tracing with limited number of bounces

Global lllumination

Separate color from illumination information
Why?

- Illlumination may be much less detailed than surface colors (albedo)
- Illumination computationally expensive, surface colors cheap

How?

- Most materials have multiplicative color term — extract
- Pretend first hit is white, calculate, then multiply illumination by albedo

Color (Sponza)

Global lllumination (Sponza)

s
SR ES T V

48.3 fps) . & \]

.
-
%

.

-

Result, Gl blurred (Sponza

Gl - Best case

High frequency (detailed) materials, low frequency Gl:

- Diffuse materials (absorbing, random ray exit direction)
- Detailed albedo textures

- Normal maps, material mask textures e —

Masked materials on surfel global illumination

Gl - Worst case

High frequency details in Gl, few details in color:

- Glass surfaces

- Smooth, reflective surfaces like mirrors, glitter
- Transparent surfaces

- Caustics

Heiner Otterstedt,
https://en.wikipedia.org/wiki/File:Kaustik.jpg

Surfels

Surface Elements

- Store spatial, local data, here illumination
- Belongto asurface
- Specific to normal, and surface properties
like roughness, smoothness, BSDF in general

through real-time raytracing”

— weighting function for interpolation needed

Surfel Weights

Interpolation formula
Goal is lighting data interpolation without knowledge about other surfels:

Assign weight w(s,p) for each surfel s to each pixel p:

Each surfel is handled with a BSDF matching the original pixel, where it was spawned
Terms: distance, normal, roughness, specularity

Surfel Gl without/with weight terms for roughness and specularity

Drawing Surfels in Un]ty | Surfel Count _Instanced FPS _Procedural FPS |

262144 53.0 120 |
524288 27.0 120 ||
1048576 13 5 120 ||
1) Instanced rendering in Unity requires matrix array i i?gggi 3 1 gg I

— large overhead + CPU->GPU data transfer needed

Perf. in Unity 2023.1.0a15; Ryzen 5 2600, RTX 3070

2) Procedural rendering, all surfel data can remain on GPU < 3 Ly

i‘ \7

— sum of (light * weight)s + sum of weights — additive blending on RGB + W (alpha channel)

Goal: Interpolation of colors (and gradients)

lllmh. Bme .

— in following shader division by sum of weights ; if weight sum is zero, search neighbor pixels

Interpolation formula

Surfel dit. after some time with camera movement (Sponza)

Surfel Distribution

2
Z
f’

-

Initial via Fibonacci sphere / projected Hilbert curve RS G % :
Fibonacci sphere / Hilbert curve initialization

Update: in 16x16 sections, find pixel with lowest weight,
and respawn random surfel there (temporal sample collection)

Non-ideal: high densities mostly remain when moving backwards

Hilbert curve

ORI

Dense spot after moving away from wall

Transparency on Surfels

- Spherical Harmonics
- Dithering

- Handling transparent surfaces as
highly angle dependent, like mirrors

Spherical Harmonics from Inigo Quilez Ghosting on transparent surface

Poisson Reconstruction

Gimp/Photoshop Healing operator:
Merge foreign features into images

Transferring a stripe pattern in GIMP

Given base color and gradients, reconstruct the original image Vi ges Seees et fiein W idh Degs 2

Often solved iteratively, e.g., with Gaul3-Seidel-iteration

Idea from “Gradient Domain Path Tracing”: gradient information has less fireflies, so it is more
stable ~ has less “energy”: only non-zero, if ilumination changes

— should accelerate convergence

Results

Working surfel distribution

Weighting scheme on
BSDF-specific surfels works
for colors

Procedural rendering is performant

o v, ¢ s 3 - - " _
o i - Agh Pt o AT R

Surfel distribution after some time with camera movement

(Sponza)

http://www.youtube.com/watch?v=2E7uBXz8gl8

Per-Pixel Path Tracing,
comparison with/without Poisson Reconstruction

Per-Pixel Pathtracing

== Without PR
== With PR

Frame Index

Surfels vs Per-Pixel

Convergence of Surfel-based Path-Tracing

Without Poisson Reconstruction

-3 Per-Pixel, no PR
=4 Surfel Density 2

Surfel Density 3
== Surfel Density 6

Frame Index

Surfel Gradients: too smooth
Weighting gradients doesn’t work that easily

Surfel Gradients; too smooth
Unsuitable for Poisson Reconstruction

Convergence of Surfel-based Path-Tracing

Poisson Reconstruction with different no. iterations

=@ Per-Pixel, no PR
No Iterations
=410 |terations
20 lterations
== 30 Iterations
=p— 100 Iterations

Frame Index

Future Work

- Better gradient calculation for edges, e.g., by averaging sides of edge separately, then summing
Neither sum nor average is correct

- Draw surfels using quads instead of boxes (performance)

- Increase path tracing efficiency, e.g., using ReSTIR (spatiotemporal reservoir resampling)

- More efficient gradients, e.g., by bidirectional gradient domain path-tracing (C++ — Unity
translation needed, plus replacements for dynamic allocations)

- Transparent/extremely rapidly changing regions could be handled with spherical harmonics, and
really smooth reflections using per-pixel PT

- Despawn surfels, where very dense

- Surfel migration by gradient of density

- Handlereflections and direct shadows separately for sharp results

Thank you for your attention

Sources:

Mitsuba Handbook image:
https://www.mitsuba-renderer.org/releases/current/documentation.pdf, sec. 8.2, page 52

"Global lllumination Based on Surfels” image: page 178
Andreas Brinck and Xiangshun Bei and Henrik Halén and Kyle Hayward

“Shiny Pixels and Beyond: Real-Time Raytracing at SEED” image: page 57/58
Tomasz Stachowiak, SEED - Electronic Arts

"GTAYV - Graphics Study” image: Adrian Courréges,
https://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/

Spherical Harmonics image: Inigo Quilez
https://en.wikipedia.org/wiki/File:Spherical Harmonics.png

https://www.mitsuba-renderer.org/releases/current/documentation.pdf
https://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/
https://en.wikipedia.org/wiki/File:Spherical_Harmonics.png

