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Abstract

In this bachelor thesis, we propose a ranking based on learning to rank to order results
of queries over knowledge graphs. Queries consist of basic graph patterns with variable
entities and the results are bindings of actual entities to the variables. With these bind-
ings, a subgraph of the knowledge graph can be reconstructed from the query.

We discuss existing approaches from information retrieval (e.g. TF-IDF) and show
how to adapt them to a graph environment. The main challenge is that information
retrieval methods usually rely on rich text documents, which are often missing in know-
ledge graphs. The extensive text information existing in those graphs is mostly repres-
ented only by rather short literal values. To address the issue, we propose a method to
extract string data from knowledge graphs in order to make information retrieval meth-
ods applicable. In addition, we explore different graph metrics (e.g. PageRank) and their
possible application to a ranking scenario.

Moreover, we suggest to use a neural network to create a score for ranking from a
series of features. The proposed features are based on information retrieval techniques,
our string extraction method and graph metrics.
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Zusammenfassung

Diese Bachelorarbeit beschäftigt sich mit einem Ranking, das auf Learning To Rank
(LTR), also Maschinellem Lernen basiert, um Ergebnisse einer Anfrage auf Wissensgra-
phen nach Relevanz zu ordnen. Die Anfragen bestehen aus Aussagen mit unbekannten
Entitäten und die Ergebnisse sind Entitäten, durch die die Aussagen wahr werden. Mit
diesen Ergebnissen kann man einen Subgraphen des Wissengraphens rekonstruieren.

Für diese Sortierung untersuchen wir Methoden aus dem Bereich ‘Information
Retrieval’ (z.B. TF-IDF). Die Hauptherausforderung der Methoden aus diesem Bereich
ist, dass diese Methoden auf umfangreichen Textdokumenten arbeiten, die oft nicht in
Wissensgraphen vorkommen. Stattdessen enthalten sie nur recht kurze Literale. Wir
schlagen daher zur Extraktion der String-Daten aus dem Wissensgraphen eine Methode
vor, damit wir Verfahren aus dem ‘Information Retrieval’-Bereich nutzen können. Des
Weiteren erkunden wir Graph-Metriken (z.B. PageRank) und ihre Nutzbarkeit für ein
Ranking.

Für das Ranking-System schlagen wir eine Reihe von Features vor, die das LTR nutzt,
um einen Score zu berechnen, der dann zum Ranking verwendet wird. Unsere vorgeschla-
genen Features basieren auf den vorher untersuchten Gebieten und Methoden.
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Chapter 1

Introduction

Searching though data collections using keywords is part of a lot of systems, with the
most popular among them probably being Google search1 [Net20]. Other popular systems
include Amazon2, YouTube3, and Bing4.

Users enter a few keywords and the system returns a ranked list of results deemed
relevant. The order of the results is important: the most relevant results should be at
the start of the list, and irrelevant entries at the end [Dea19]. Unfortunately, the task of
ranking documents according to the query keywords is not a trivial task.

1.1 Background on Keyword Search
Search is traditionally performed on collections of documents containing text. In the first
step, documents, that match the search query are retrieved, then they are ranked in order
of relevance. Searching over all documents for every query is very time-consuming, so
‘inverted indices’ [Jai] are created: First all documents are read. For each word appearing
in the documents, excluding common so-called stop words, a list is created. The lists will
contain a reference to the documents, where the considered word appears. Additionally,
the word frequency can be added for later ranking.

When searching for documents, the lists for all query keywords are retrieved. Docu-
ments are then ranked based on the number of occurrences in those lists. Only documents,
which appear in the lists of all keywords are displayed. Inverted Indices created using this
simple approach have the huge disadvantage, that documents, that use only synonyms
of the entered keywords, may not be discovered. For example a document might use the
word ‘father’ instead of ‘dad’ and thus will not be retrieved in response to the query
‘dad’. This can be improved by using lists of synonyms, and by associating the group of
words with similar meaning to one representative term. For simplicity, the representative
term can be member. For example, ‘father’ can be chosen as the representative term
for ‘father’ and ‘dad’. Sub-classes (hyponyms) and super-classes (hypernyms) are similar
in meaning as well, and could be used too, like in [LK16]. The document lists of all
words are enriched by all documents, which contain synonyms to that word. This is done

1https://google.com
2https://amazon.com
3https://youtube.com
4https://bing.com
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Figure 1.1: A knowledge graph example

for example by Amazon [SCP16]. A disadvantage of adding all synonyms is, that being
synonyms does not necessarily imply relevance to the query since the context of the word
can be important for its meaning. Often that context is defined by the other keywords of
the query. For example, ‘pause’ and ‘shattering’ are synonyms for the keyword ‘break’.
But ‘pause’ is very different from ‘shattering’. When searching for ‘break from school’,
documents containing the word ‘shattering’ are likely not relevant.

When the lists of documents are expanded with synonyms, false positives are intro-
duced. However, when not adding them, relevant documents may be missing. To find
a proper balance, semantic approaches are required to extract the context of a query.
Knowledge Graphs (KGs) can help with that.

1.2 Knowledge Graphs
Information has not only become widely available in text form, but also directly as
machine interpretable concepts, objects (instances or literals) and their relations. The
concepts and objects are called entities. When relations are interpreted as connecting
edges between one entity and another, the knowledge is effectively a graph.

An example is given in Figure 1.1. It uses the entities ‘Alice’, ‘Bob’, ‘Human’, ‘Mam-
mal’, ‘Texas’ and ‘State’, the literal value ‘24.11.1987’, and the relation types ‘instance
of’, ‘subclass of’, ‘knows’, ‘born’ and ‘lives in’.

The arrows symbolise the flow of a typical English sentence, and indicate that those
relations are directed. Entities, the subjects and objects of a sentence, are the nodes of
the graph, while the predicates are the directed edges. With this representation, related
concepts are closer in the graph than unrelated concepts.

For a general purpose search engine, that used KGs to semantically enhance search,
large-scale and cross-domain KGs are needed. A popular open KG is DBpedia5 [LIJ+14],
which extracts knowledge fromWikipedia6 articles. Another example is Wikidata7 [VK14],
which can be collaboratively edited by humans and machines. Its data is intended to be
used directly in Wikipedia, so that an update of a single fact is consistently represented

5https://wiki.dbpedia.org/
6https://www.wikipedia.org/
7https://www.wikidata.org/
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across all pages in Wikipedia. The data from both projects can be downloaded and used
for free. But those are only a few of many public projects with shared knowledge: the
Linked Open Data Cloud8 gives an overview of more datasets.

There are two popular data formats to represent KGs: Resource Description Frame-
work (RDF) [Swi99] and Labelled Property Graphs (LPGs). In RDF, the vertices and
edges of the graph are resources with Internationalized Resource Identifiers (IRIs). Ver-
tices also can be datatyped literals (e.g. strings, numbers, dates) or blank nodes. IRIs
are Uniform Resource Identifiers (URIs), but with the Universal Coded Character Set
instead of US-ASCII [FUS], so special characters like umlauts are possible. In LPGs all
vertices and edges are identified by their ID [Bar17]. They have attribute lists instead of
literal neighbour nodes.

Both approaches have their advantages and disadvantages: Querying paths from one
node to another, or calculating the number of paths is easier with LPG, because the
graph is smaller. However, LPGs do not support inheritance. Additionally, there are
no restrictions for the attributes, which makes inference of new knowledge with logical
reasoning more complicated. Using IDs instead of IRIs makes merging datasets tedious,
because entities may have the same ID, while being different, or be the same, while having
different IDs. A work-around is to link the datasets together (e.g. by including a prefix as
a source dataset identifier), and then using nodes from multiple graphs inside one system.

SPARQL (SPARQL Protocol and Query Language) [SH13] is a popular query language
for RDF, and can be used to query both DBpedia9 and Wikidata10.

Similar to SQL, a popular query language for databases, a select-query is a set of
constraints on the result. Often they are triples, with a couple of unknowns. The query
processor then tries to fill in unknown nodes using the KG, such that all constraints are
fulfilled. The result of such a query is then a list of all possible matches between the
requested structure and the KG at hand.

To retrieve all pairs of entities knowing each other with one of them living in Texas
from the KG in Figure 1.1, we can use the query in Listing 1.1.

SELECT ?a ?b
WHERE {

?a ex:knows ?b .
?b ex:knows ?a .
?b ex:livesIn ex:Texas .

}

Listing 1.1: Example Query.

In this case, there will be only one result. ‘?a’ will be bound to ‘Alice’ and ‘?b’ to
‘Bob’. The corresponding subgraph is presented in Figure 1.2: it is the same three triples
from the query, just ‘?a’ and ‘?b’ were replaced with ‘Alice’ and ‘Bob’ respectively.

8https://lod-cloud.net/
9https://dbpedia.org/sparql

10https://query.wikidata.org/
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BobAlice knows Texaslives in

Figure 1.2: The result subgraph
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Figure 1.3: Overall overview of the problem

Each result is called a binding. A query can result in subgraphs of different shapes,
because SPARQL allows for optional restrictions and logical connections (and, or and
not operators) of constraints, so not every single constraint needs to be fulfilled for each
binding.

1.3 Naming Conventions
Figure 1.3 gives an overview of the concepts and their relations used throughout this
thesis. We call each binding and its associated subgraph ‘result’. For simplicity, we call
the explicitly defined entities and literals ‘query nodes’, because they are nodes defined
in the query. We call the variable entities and literals ‘result nodes’, because they are
KG-nodes specific to the result. All nodes in between are also considered query nodes to
simplify our features11.

11creating a third group would be more complex
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We can distinguish between global and local ranking. Global ranking is query inde-
pendent, while local ranking depends on the issued query. Global rankings face the issue
that a result is only rarely relevant to all queries.

In formulas, we use arrows on −−−−→vectors and hats on m̂atrices to clarify the type of
variables. We define the average as the mean value. It is equal to the sum of the values
V = (v1...vn) divided by the number of values (see Equation 1.1).

average value = 1∑
vi∈V 1

∑
vi∈V

vi (1.1)

1.4 Thesis Scope
While SPARQL queries effectively deliver a set of subgraphs for the query, they do not
automatically rank them in any meaningful way. In this thesis, we first discuss different
ranking strategies from the information retrieval (IR) and graph communities. Pure IR
techniques often work only on text, while graph metrics ignore the labels and descriptions
of the graph’s nodes and edges. Based on this comparison, we then propose a concept
to rank subgraph-shaped query results over KGs. Typically, entities are described using
their label, a description, and additionally contain other string properties. All this text
information can be used in the ranking.

In summary, we take a look at existing IR and graph-based approaches. Using these,
we propose a ranking method based on LTR (see Section 2.3.3) to rank sets of result
subgraphs.

9



Chapter 2

Related Work

In this chapter, we will present popular ranking techniques, give some examples of how
multiple scores can be merged into one, and talk about related approaches. We use these
as a basis for our proposed ranking system.

2.1 Ranking Techniques
Information retrieval (IR) techniques in general have existed for quite some time now,
while IR techniques working on KGs have become a popular topic in data science just a
few years ago (e.g. [LXSL18, DKM18, SGCR19]).

2.1.1 TF-IDF
Term Frequency - Inverse Document Frequency (TF-IDF) [JON72] is one of the most
popular IR techniques. It belongs to the Bag of Words (BOW) approaches. A Bag of
Words (BOW) is a multiset, so it effectively counts, how often which words appeared.
There are IR approaches, which only work on BOWs and ignore the sentence structure.
Other approaches may additionally use the sentence structure to get a better result.

TF-IDF tries to measure how well a group of terms (e.g. a keyword query) matches
a given document. Each term is assigned a score depending on how often it occurs in a
document, weighted by the importance of the term. Then the scores are added together
to form a score for the document with respect to the query. The first part of this score,
the term frequency (TF), tries to capture how often a term appears in the document.
The second part, the Inverse Document Frequency (IDF) measures how significant the
term is in the whole document collection. It gives for example stop words like ‘the’ and
‘a’ only a small score, because they are more common words, while more rare terms are
given more importance.

The TF reflects how often a term appears in the document. It can be the raw value,
of how often a term appears in the document, or relative to the most frequent term
[MRS09]. The relative variant is shown in Equation 2.1. Using no normalization can give
long documents an unfair advantage1. Furthermore, values of TF would not be limited to

1abuse of the system could be imagined, where multiple copies of the same document are concatenated
to get a higher score
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a specific range, which can become an issue. Terms can be N-grams (chains of N words),
or complex names like ‘Queen Elizabeth II’, but order and grammar of terms are ignored.
TF-IDF is calculated as the multiplication of TF and IDF (Equation 2.2), where IDF is
given by the logarithm of the inverse fraction of the documents that contain the term.
Using the logarithm is similar to an entropy of the terms over all documents. In the
equations, qi is a term from the query, D is the document, p is a term from D, for which
the score shall be calculated, and q1..qn is the whole group of terms of the query. Note
that the resulting value for TF-IDF has no upper bound.

TF(qi, D) = number of occurances of qi in D
max∀p∈D(number of occurances of p in D) (2.1)

IDF(qi) = ln

(
|∀D|

|∀D, qi ∈ D|

)
(2.2)

TFIDF(qi, D) = TF (qi, D) · IDF(qi) (2.3)

TFIDF(q1..qn, D) =
n∑
i=1

TFIDF(qi, D) (2.4)

Okapi BM25

Okapi Best Match 25 (BM25) is a ranking function analogous to TF-IDF. BM25 is
effectively just another way to normalize the TF-term. However, it is said to give long
documents too little weight [LZ11]. The BM25 score of a document D with respect to
the keywords q1..qn is defined in Equation 2.6.

relative document length = document length
average document length

(2.5)

BM25 (D, q1...qn) =
n∑
i=1

IDF(qi) ·
TF(qi) · (k1 + 1)

TF(qi) + k1 · (1− b+ b · relative document length)
(2.6)

The constant k1 is usually set to a value between 1.2 and 2.0, and b to 0.75 [Con18].
The parameter b controls the influence of the relative document length, and k1 the smooth-
ness of the normalization curve. The smaller k1 is, the sharper the curve becomes when
varying TF .

2.1.2 Knowledge Graph Measures
One of the simplest rankings would be to rank subgraphs higher, which have shorter paths
from all variables to all explicitly specified entities in the query. Two similar metrics are
radius and diameter of the subgraph. The radius and diameter of graph G are defined
respectively in Equation 2.7 and 2.8 [Bha], where N are the nodes of the graph G, and

11



the distance from any node n1 to another node n2 is defined as the length of the shortest
path between them.

Radius(G) = min
n1∈N

max
n2∈N

Distance(n1, n2) (2.7)

Diameter(G) = max
n1∈N

max
n2∈N

Distance(n1, n2) (2.8)

The radius is the longest distance between the center node and the graph nodes, where
the center node is the node closest to all others (individually). The diameter is the largest
distance between two nodes in the graph [Bha].

There are other measures on vertices and edges, called centralities. They typically are
used to find the most important nodes of a graph. In-Degree- and Out-Degree-Centrality
are two simple centralities, where the value for node is the number of incoming/out-going
edges in the KG. PageRank is another centrality measure.

2.1.3 PageRank
In [Pag98] the PageRank algorithm is proposed, which helped Google to become so suc-
cessful. The computation of a score for a document incorporates all other documents as
well. PageRank is modelled as the average number of users on a node (e.g. website),
while moving from node to node via links, or randomly when ‘bored’.

The random jumps are often presented as a vector, where each element represents a
node, and the value is the chance the current node is chosen randomly. This vector is
called the preference vector.
PageRank follows three basic rules:

• If there are no links to other nodes, users will jump to a random node in the graph.

• Users will follow a link to another node with a defined probability 1− p.

• Otherwise they traverse to a random node or their preferences in the graph.

The formula for PageRank is given by Equation 2.9, where p is the probability of a
random jump, −→PR is the vector of PageRanks −→PR = (PR1 , ...,PRn), where PRi is the
PageRank of node i. −→P is the preference vector, and Â is the adjacency matrix, where
the entries are weighted to be probabilities for a user moving from this node to another
randomly. The computation of the number of users on a node, called the PageRank, is
done iteratively. It usually converges in O(log(Number of Nodes)) iterations.

−→PR = Â ·
−→PR · (1− p) + p ·

−→
P (2.9)

PRi = PageRank of node i (2.10)

Âij =


1
number of outgoing edges from node i edge from node i to node j exists
0 else

(2.11)

The algorithm is famous for several reasons: it is rather simple, requires mostly se-
quential storage accesses and it allows great customizability by changing the preferences
for the random jumps. If p = 0, −→PR converges to an Eigenvector of Â.

12



In the context of web search the score relies on links from other important pages, like
search engines and catalogues, social networks, wikis, or blogs. This symbolic authority is
hard to falsify, and it was rather important for good search results, because some people
were creating pages with lists of keywords just to get a higher ranking. Pages with less
useful content would rarely be pointed to by other pages and would get a lower PageRank.
The customizability can be used for a search engine for one’s own website: the random
jumps can be jumps back to the main page.

We call PageRank, where the preference vector has the value 1
node count at every pos-

ition, global. When only selected nodes2 have non-zero entries in the preference vector,
we call it local, because the best results are more likely to be close to the non-zero entries
than far away. In [Pag98] a preference vector is tested, where the only non-zero entry is
the website of the computer scientist John McCarthy. Their test works pretty well, and
favours the websites of his colleagues over foreign, popular universities.

FolkRank

There are a lot of other methods, that are based on PageRank. One of them is FolkRank
[HJSS06], which applies PageRank to users, posts, and tags of a social network. Folkso-
nomies are informal taxonomies or classifications created by non-expert users. They can
be realised using tags. These tags are set by the user creating the post. For FolkRank,
users, posts, and tags become the nodes of the graph. For each post, undirected edges
are created: to the user, who created the post, and to the tags associated with the post.
The preference vector (see Section 2.1.3) is changed for a query such that users and tags
matching the query terms get a weight of one, while rest is set to zero. The developers of
FolkRank had the issue that the undirected edges resulted in minor changes of the PageR-
ank when changing the query. They solved this issue by using the difference between the
local (query-dependent) and the global (query-independent) PageRank, which in the end
worked quite well.

ObjectRank

ObjectRank [BHP04] is a ranking method based on PageRank, but instead of websites,
it is intended for use in KGs. The predicates are assigned two weights, one for each
direction3. This effectively just doubles the edges in the graph and adds weights to each
edge. The weights define the relative jump probability to the next node. For example,
the passive form of a predicate is typically assigned the same weights as the active form,
just with the weights switched around. For example, the weights of the predicates can be
chosen to reflect authority transfer, or a different preference, depending on the use-case.
Then the typical PageRank is calculated. The query is performed in the same way by
changing the preference vector.

2e.g. keyword entities
3in direction of the edge, and backwards
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2.1.4 HITS
Hyperlink-Induced Topic Search (HITS) [Kle98], also called ‘Hubs and Authorities’, are
two rankings, that were developed at a similar time as PageRank. HITS defines hubs
(hub-score), which are like search engines in the context of the internet, and authorities
(authority-score), which are sites with their own content. The idea of the model is, that
nodes are good hubs, if they point to a lot of nodes. They are good authorities, if a lot
of hubs point to them. Good hubs/authorities are worth more than bad ones. In the
algorithm, hub-scores and authority-scores are updated in an alternating manner, until
the scores are no longer changing significantly. Notice the link directions in Equation 2.14
and 2.15, so the hub-score depends on the out-links, and the authority-score on the in-
links. HubScorei(n) and AuthScorei(n) define the scores of a node n in the i-th iteration.

HubScore0(n) = 1 (2.12)
AuthScore0(n) = 1 (2.13)

HubScorei+1(n) =
∑

∀m, n→m
AuthScorei(m) (2.14)

AuthScorei+1(n) =
∑

∀m, n←m
HubScorei+1(m) (2.15)

After each iteration, the hub- and authority vectors are normalized by dividing them
by their Euclidean length. The procedure is stopped, when the values have converged.
Both scores can be equally interesting, so the best approach is probably to combine them
(see Section 2.3). A known issue with all purely graph based algorithms is topic drift
[vu]: just because of good connections to a site mentioning the keywords, a site gets a
good score, even if it is not really related.

In summary and in comparison to PageRank, the HITS scores not only consider the
incoming edges of a node, but also the outgoing edges with their second score. In both,
the scores are distributed over the whole network until they converge, so nodes are not
only dependent on their neighbours, but the whole community around them.

2.1.5 Word Embeddings
Machine learning models can only work on vectors, so we need to transform our terms
to them. Typically, terms are encoded as 1-of-N vectors. In this one-hot encoding, each
term gets a dedicated index of the vector. All values, except at the dedicated index, are
set to zero. The value at the dedicated index is set to one. The problem of the one-hot
encoding lays in the vastness of our vocabulary, such that the vector is very long and most
values are zero. Additionally, there are many terms for similar, or even the same things.
Like ‘car’ and ‘automobile’, which have no similarity in character nor vector appearance
at all.

Word2Vec [MCCD13a] is a popular group of machine learning models. It uses continuous-
bag-of-words or skip-grams and huge amounts of text, to calculate more efficient word
representations. It additionally incorporates that similar terms have close representa-
tions, because the embeddings are optimized in a way, that terms, which appear close to

14



each other in the text, have similar embeddings. The dimension of the vector representing
a term is typically chosen to be between 100 and 1000.

Skip-grams [MCCD13b] is a machine learning model, that given terms from a sentence,
it is trained to predict a missing term of that sentence. When similar words appear next
to each other, they result in a similar prediction, because they are more likely to be from
the same sentence.

Another algorithm to generate embeddings, specifically for knowledge bases, is RDF2Vec
[RRN+17], which generates entity embeddings. In RDF2Vec the triples are converted to
sequences using graph-walks, and graph kernels. Graph-walks is the process of creat-
ing sentences by traversing the graph. Graph kernels calculate the structural similarity
between two graphs. The sequences then are used to train a neural language model with
an internal representation to estimate the probability of a triple appearing in the graph.
The internal representation is used as embedding.

Amazingly, embeddings often turn out to be near-linear. The most famous example
is that the closest vector to (king −man) + woman was found to be queen in Word2Vec.
However, examples like that sometimes only work, if the word embeddings in the formula
are excluded from the result set [NvNvdG19]. Word embeddings are especially interesting
to find represent words in different languages for translation, or to cluster similar concepts.

To compare the embedded terms, the dot product, or an l-norm of the difference can
be used. Typically, the dot product on the normalized vectors is used, which is equivalent
to the cosine of the angle between the vectors. This approach to compare terms is called
Cosine Similarity [SG01].

The Equations 2.16 to 2.27 show example word embeddings, where −−→WE(i) is the word
embedding of the term i, and −−−→nWE(i) is the normalized word embedding of i. Using these
word embeddings and the cosine similarity, we can deduce that ‘Dog’ is closer to ‘Wolf’
than ‘Cat’.

−−→WE(Dog) = [3, 1, 0] (2.16)
−−→WE(Cat) = [3, 5, 0] (2.17)
−−→WE(Wolf ) = [3, 2, 1] (2.18)

−−→WE(Cat) · −−→WE(Dog) = 3 · 3 + 5 · 1 + 0 · 0 = 14 (2.19)
−−→WE(Wolf ) · −−→WE(Dog) = 3 · 3 + 2 · 1 + 1 · 0 = 11 (2.20)

−−−→nWE(Dog) =
−−→WE(Dog)
|
−−→WE(Dog)|

≈ [0.95, 0.32, 0.00] (2.21)
−−−→nWE(Cat) ≈ [0.51, 0.86, 0.00] (2.22)
−−−→nWE(Wolf ) ≈ [0.80, 0.53, 0.27] (2.23)

|
−−→WE(Cat)−−−→WE(Dog)|1 = |[0, 4, 0]|1 = 4 (2.24)

|
−−→WE(Wolf )−−−→WE(Dog)|1 = |[0, 1, 1]|1 = 2 (2.25)
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Method Basis Simple Fast Init. Fast Query Quality
TF-IDF text
Okapi-BM25 text
KG-Distance graph
Global PageRank graph
Global FolkRank graph
Global ObjectRank graph
Local PageRank graph
Local FolkRank graph
Local ObjectRank graph
HITS graph
Word Embeddings text

Table 2.1: Summarized comparison of different ranking strategies.
: one of the worst; : one of the best

Cosine Similarity(Cat,Dog) = −−−→nWE(Cat) · −−−→nWE(Dog)
≈ 0.76 (2.26)

Cosine Similarity(Wolf ,Dog) ≈ 0.93 (2.27)

If an embedding of a word- or term group is required, the average of the word em-
beddings can be used. The closer the vector representations are, the better is the result.
In [KBdR16], the authors state that using the average has proven to be ‘surprisingly
successful and efficient’. In their paper they use a neural network to create word em-
beddings, which are especially suitable to compare sentences using the average of the
terms for a sentence embedding. They reached state-of-the-art performance using their
approach in 2015. In [NFS17], TF-IDF is used to weight rare words higher, which signific-
antly improves the correlation results on the Arabic Monolingual Pairs Semantic Textual
Similarity task (see [Qat17]).

2.1.6 Comparison Overview
In Table 2.1, we provide an overview over the previously discussed ranking strategies.
The column ‘Basis’ show whether the techniques work on text documents or a graph.
‘Simple’ is an estimation of how easy is this method to implement. ‘Fast Init.’ is a
relative estimation on how much computation time is required before documents can be
ranked, and ‘Fast Query’ of the computational time required at query time. Indexes can
be used to reduce the time of queries, but they need additional computation time and
storage. The last column ‘Quality’ is an estimation of the quality of the ranking. All
these assessments are based on the subjective opinion of the author.

2.2 Evaluation of Ranking Algorithms
When evaluating ranking strategies, it is necessary to define a measure of how good the
result of an algorithm is in comparison with a ground truth ranking. Usually only the top
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ten results are ranked, because most of the time, only the first page is visited [Dea19],
and sites like Google show ten results per page. Typical examples for evaluation func-
tions are precision, recall [Pow08], F-measure [VR79, Sas07], and Normalized Discounted
Cumulative Gain (NDCG) [JK00]. The input consists of pairs of keywords and results
with relevance rankings. Precision, recall and F-measure are defined by the Equations
2.28, 2.29 and 2.30 respectively.

Precision = Number of True Positives
Number of True Positives + Number of False Positives (2.28)

Recall = Number of True Positives
Number of True Positives + Number of False Negatives (2.29)

F -measure = 2 · Precision · Recall
Precision + Recall (2.30)

True Positives and False Positives are documents, which were labelled as being rel-
evant. True Positives were correctly labelled, False Positives not. False Negatives are
documents, which were labelled non-relevant although they are relevant.

The metric Hits@N (Equation 2.31) is the percentage of relevant documents in the
top-N results. N is typically one or ten for Hits. The Cumulative Gain (CG), shown in
Equation 2.32, is a similar metric, which adds a state in-between being relevant or not:
being related. The relevance score is defined as two, if the result is relevant, one if it is
related, and zero otherwise. Being related can be defined as being part of the same topic,
or similar. The judgement of relevancy for all results is usually done manually by human
volunteers. The Discounted Cumulative Gain (DCG) divides the relevance by the rank
of the respective entry within the list of results (see Equation 2.33).

Hits = 1
N

N∑
rank=1

1 if relevant, 0 else (2.31)

CG =
N∑

rank=1
relevancerank (2.32)

DCG =
N∑

rank=1

relevancerank

ln(rank + 1) (2.33)

The Normalized Discounted Cumulative Gain (NDCG) was introduced, because for
a query, there might not be N relevant documents. It is the DCG divided by the highest
DCG observed for that query, such that the optimal result gets a one as score, independ-
ently of N and the number of matching documents available. The formula for NDCG is
given in Equation 2.34. The variables r, and r2 stand for a result.

NDCG(r) = DCG(r)
max∀r2∈known results DCG(r2)

∈ [0..1] (2.34)
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2.3 Combining Rankings

To achieve better results, multiple methods are combined. Google have used a lot of
ranking signals in their algorithm [Goo]. Combining rankings requires scores to be some-
how merged into one, because the goal is a single ranking. To avoid working on very
different scales of magnitude, it is a good idea to normalize the scores of each ranking
into a comparable range.

Besides combinations to improve the ranking quality, in production a pipeline with
simple ranking methods like TF-IDF is used to extract the top-N relevant results, and
then a computationally more expensive approach to re-rank those top-N results to the
top k, k « N.

The assumption, that there must be a perfect rank merging is simply made, but it has
been proven invalid by Arrow’s Theorem [Arr12]. The fairness criteria non-dictatorship,
independence of irrelevant alternatives, and unanimity can not always be fulfilled to-
gether. Besides that, merging ranks always needs to consider, how the ranks were created,
such that irregularities do not give unintended advantages to single voters. The following
collection consists of algorithms, which could be used to join arbitrary ranks.

In the following, Ri(e) ∈ N is the rank of the ith method on entity e, while Si(e) ∈ R is
its normalized score, Scomb(e) ∈ R is the combined score, and wi ∈ R is the weight of the
ith rank or score. Ranks are determined by ordering the individual results by their score.
So both values represent similar concepts, but use inverse scales: a relevant document is
supposed to receive a higher score, but a lower rank/index.

If proper training data is available, LTR can be used to determine good weights by
using a linear model.

2.3.1 Weighted Sum of Indices or Scores

One of the simplest methods is to add the indices of the rankings together, and use this
as a penalty (lower is better). This is more stable for measures with large gaps, but at
the same time, the information about the gap width is lost, which might be important
too.

Weighting can be done by multiplying the indices or scores with weights.

Scomb(e) = −
∑
i

wi ·Ri(e), higher is better (2.35)

or
Scomb(e) =

∑
i

wi · Si(e), higher is better (2.36)

The issue with this algorithm on indices is that a single very bad ranking can seriously
impact the overall ranking, even if all other scores disagree. A way to prevent this is to
use the inverse rankings:

Scomb(e) =
∑
i

wi/Ri(e), higher is better (2.37)
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Figure 2.1: Counting Required Swaps: Here two swaps are needed.

2.3.2 Weighted Product of Scores
Another simple approach is to multiply the individual normalized scores, like in the
geometric mean. Contrary to the geometric mean, applying the root is unnecessary here,
because only the order of values is relevant for the ranking. It is very similar to the
weighted sum. In this case, the weighting can be done by raising the scores to the wi-th
power (see Equation 2.38). E.g. squaring a score is equal to giving it two votes. A bias
term bi can be added to avoid annihilation by a score with a value of zero, which would
result in a total score of zero, even if all other scores are high.

Scomb(e) =
∏
i

(Si(e) + bi)wi (2.38)

2.3.3 Learning to Rank
Learning To Rank (LTR) [Li11] is a large group of methods using machine learning on
feature vectors to rank search results. A very simple machine learning model is the linear
model, where all features are multiplied by a weight specific to this feature, and then
all values are added (see Section 2.3.1). The optimal parameters (or weights) for the
model are found by training the model. If results are generally better for small values
of a score, rather than for large values, the machine learning model will learn this as
well. This training is done by effectively testing different variations of the parameters
on sample/training data and iterative optimization of the model parameters. In machine
learning, the ‘loss function’ is the function, that measures how good or bad the model
parameters are.

Popular examples of LTR methods are RankNet, LambdaRank and LambdaMART
from Microsoft [Bur10]. They all are way more complex than the linear model to get
better results. In RankNet the loss function is equal to the minimum number of swaps
required to get a perfect result, as shown in Figure 2.1, where numbered squares represent
search results and the numbers represent the ground truth relevances.

It is optimized using stochastic gradient descent [Bur10]. LambdaRank is a derivative
of RankNet, where the difference of the NDCG (see Section 2.2) is included in the gradi-
ent descent. This resulted in faster training and better results. Further improvement was
achieved using LambdaMART, which is a combination of the machine learning model
Multiple Additive Regression Trees (MART) [Fri01, Fri02] and a loss function similar to
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the one used by LambdaRank.

Problems with LTR

A problem with machine learning compared to traditional algorithms is that a lot of
high-quality training data is required. Established search engines, like Google, YouTube,
or Watson from IBM can use their existing user base to train their model, but new sys-
tems need to collect the data themselves. One possibility is to use existing datasets like
[QL13] or [CC11]. Both Google (RankBrain [Cla15]), and Watson [Wat20] by IBM4 use
LTR at least partially in their search. Another requirement for LTR, or machine learning
in general, is that the loss function needs to be defined, which is subsequently optim-
ized in training. The evaluation metrics from Section 2.2 can be used as loss functions,
because they indicate how good a model with its parameters is. However, the function
needs to be inverted in some way to be a ‘real’ loss function, because a high value is good
for the discussed evaluation metrics, while a high loss is bad. A simple way to invert a
function is to use the negated value.

Another problem of machine learning is to find a model with the correct amount of
flexibility: a restrictive model has not enough degrees of freedom (underfitting), while a
too complex one might have too many (overfitting). If underfitting is a problem, the model
needs to be altered. Strategies to avoid overfitting include regularization (smoothing the
loss function) and stopping training as soon as overfitting is detected. Overfitting can
be detected by comparing the loss on the training and the validation data: if the error
on the training data is much smaller than on the validation data, the model is too well
adapted to the training data.

In the context of LTR, any scoring function (e.g. PageRank) can be used as a feature
in the model. For a simple, linear model, LTR is a way to automatically find near-
optimal weights to combine different rankings. Features, where small values are better,
get a negative weight, and features, where large values are better, get a positive weight.

To train the model, there are two types of training data: explicit and implicit. Explicit
data requires users, often domain experts to manually assign a relevance score to pairs
of queries and results. Implicit rankings are relevance scores estimated by a click-model.
The simplest model is the click-trough-rate: what is the percentage of users, who have
seen the ranked entity and have clicked on it? Disadvantages are that it is more an
estimation of attractiveness than usefulness and that it does not consider the position
bias5 [WGB+18]. A more complex model is the Dynamic Bayesian Network Click Model
[CZ09], which observes the order of clicks as well, and models attraction and satisfaction.

When temporal data, or certain flags, e.g. a product being free of charge, are available,
and they correlate with preferred choices, they can be used as ranking signals too [SCP16].
A linear machine learning model can help to find the best weighting for them.

If performance is critical, feature filtering based on usefulness and computational cost
can be used to reduce the number of features. E.g. a mediocre, inexpensive feature could
be included, while a mediocre, expensive feature should be discarded. If the entries to be
ranked differ a lot, it might be advantageous to train a model for each major category,
and join the results of those groups [SCP16].

4International Business Machines Corporation
5the first results are easier to see and reach, and therefore clicked more often
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2.4 Related Approaches
We are not the first ones with the goal to rank query results over KGs. In [BM05], they
propose a series of scores on the nodes, the edges, and the semantic classes of the nodes,
which then are combined into a total score. They work purely on the graph structure
and its class hierarchy, and do not use features from the IR community. They only rank
by importance, not relevance.

In their calculations, they give the relations of the KG weights of importance-transfer
manually. There are two weights per predicate, one for each direction, as in ObjectRank
(see Section 2.1.3). In the same way as HITS (see Section 2.1.4), they then assign each
node two scores. In HITS, they are called Hub- and Authority-Score, and in [BM05]
they are called Subjectivity- and Objectivity-Score. Additionally, they assign each class
an importance score. These three scores then are combined into a fourth score called
‘importance score’. This score is still independent of the query.

To calculate the score of the subgraph, its edges and nodes are assigned a score,
which then are combined into the score for the ranking. The formula can be seen in
Equation 2.42. The subgraph is r, decayFactor is the base for the exponential decay, which
has a value between zero and one. REoI (result entities of interest) is the set of result
entities (variables), which were part of the SELECT clause, Distance(node a, node b) is
the number of edges on the shortest path from a to b. IPF(predicate p) is the Inverse
Property Frequency of the property. Analogous to IDF, it equals log(N/n), where N is
the number of triples in the KG and n is the number of triples containing this property
in the KG. It has the purpose to make rare properties more valuable.

NodeScore(r) =
∑

n∈nodes(r)
ImportanceScore(n) · pow(decayFactor , min

m∈REoI
Distance(n,m))

(2.39)
EdgeScore(r) =

∑
(n1,n2)=e∈edges(r)

IPF(e) · pow(decayFactor , min
m∈REoI

Distance(n1,m))

(2.40)

Score(r) =w1 ·
NodeScore(r)
|nodes(r)| + w2 ·

EdgeScore(r)
|edges(r)| , (2.41)

where w1 + w2 = 1 and w1, w2, decayFactor ∈ [0..1]

The algorithm of [BM05] is modified in [IKIT14] and then a small study is conducted
to evaluate the results. Their second algorithm defines a score on all triples, called
‘TripleScore’. Its definition can be seen in Equation 2.43. PageRank is used instead of
HITS as the measure for importance of a node. To avoid having zero as PageRank for
literals, they assign the average importance of all nodes to the literals instead. s, p, o
are respectively subject, predicate, and object of a triple. Cs is the class of the subject,
and linkNum(node n) is the number of triples in the KG, where n is the subject. dst is
the minimum distance from the subject and object to the entities of the SELECT-clause.
PFIPF(subject s, predicate p) (Property Frequency - Inverted Property Frequency) is a
derivation of TF-IDF, which contrary to IPF only works on relations, where the subject
is of the same class as s, so the value becomes more specific to the used class. In the
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paper, they set decayFactor to a value of 0.5.

TripleScore(s, p, o) = PR(Cs) · PFIPF(s, p) · PR(o)
linkNum(s) + linkNum(o)− 1 (2.42)

Score(G) =
∑

(s,p,o)∈G TripleScore(s, p, o) · pow(decayFactor , dst)
|triples ∈ G| (2.43)

In their study, twelve people evaluate the results from the base algorithm and two
modified versions on four queries, and the top ten results. Both improved algorithms
deliver better results, while their second algorithm is the best. However, they still only
rank importance, not relevance, because they do not compare topics in any way.
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Chapter 3

Concepts

A lot of recent papers, that address document ranking, use Learning To Rank (LTR). The
latter can achieve state-of-the-art results and is an important part of the most popular
search engine Google [Cla15, Net20], and commercial search services like Watson [Wat20].
This motivated us to adopt LTR for ranking graph-shaped search results using features
from both IR- and graph communities. We concentrate on feature engineering, rather
than the machine learning model.

As a running example, we consider the KG depicted in Figure 3.1 with associated
descriptions as given in Table 3.1. Literals are not seen as nodes in the following, because
usually entities are most important. Entities and nodes are therefore equivalent in the
following. ‘Elvis’ is the pitcher of the baseball club ‘Super Bats’, which got him the
nickname ‘The Bat’. ‘David’ is more popular than ‘Elvis’ or ‘Cesar’, because he knows
more people. Because of this, the probability for a random person looking for him may
be higher than for ‘Elvis’ or ‘Cesar’.

Let’s consider the scenario, where ‘Alice’ is looking for someone from the ‘Super
Bats’. She additionally knows that he must be a direct or indirect friend of her friends.
This information need can be translated to the SPARQL query in Listing 3.1. The plus
operator after ‘ex:isFriendOf’ allows for a path of arbitrary length using that property.
This query has the following bindings: result node (see Figure 1.3) ‘Elvis’, ‘Cesar’ and

Label Alias Description
Alice Allie A cryptography girl
Bob - Loves Decryption Riddles
Cesar - Playing with the Super Bats
David Dave Great for partying!
Elvis The Bat Pitcher of Super Bats

Super Bats - Baseball Club in Texas
Baseball Club - Organization for playing baseball

Friend 1 - -
Friend 2 - -
Friend 3 - -

Table 3.1: Labels, aliases and descriptions for the entities in the example KG (Figure 3.1).
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Figure 3.1: KG example, excluding aliases and descriptions.

Alice Bob Elvisfriends Super
Bats

friends member ofSubE

Bob Elvis Cesarfriends Super
Bats

friends member ofSubC Alice friends

Bob Elvis Davidfriends Super
Bats

friends member ofSubD Alice friends

Figure 3.2: Result subgraphs SubE, SubC and SubD.

‘David’ with the subgraphs in Figure 3.2. The white and orange nodes are query and
result nodes respectively. The subgraph structure is the same for SubC and SubD, because
the length of their friendship chain is the same, and the query does not allow for more
variation in the subgraph.

SELECT ?searched
WHERE {
ex:Alice ex:isFriendOf+ ?searched .
?searched ex:isMemberOf ex:SuperBats .
}

Listing 3.1: SPARQL query corresponding to the considered scenario.

Based on methods discussed in Section 2.1, we propose the following features to be
used with LTR. We categorize these features into five groups, depending on their origin
and characteristics:

• based on the whole KG structure,

• based on the subgraph structure only,

• TF-IDF-based,
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Entity SC1 SC2
Alice (Alice, Allie) (Alice, Allie, A, cryptography, girl)
Bob (Bob) (Bob, Loves, Decryption, Riddles)
Cesar (Cesar) (Cesar, Playing, with, the, Super, Bats)
David (David, Dave) (David, Dave, Great, for, partying)
Elvis (Elvis, The, Bat) (Elvis, The, Bat, Pitcher, of, Super, Bats)

Super Bats (Super, Bats) (Super, Bats, Baseball, Club, in, Texas)
Baseball Club (Baseball, Club) (2 x Baseball, Club, Organization, for, playing)

Table 3.2: SC1 and SC2 of entities of the example KG (see Figure 3.1).

• embedding-based and

• domain-specific properties of entities.

Some of the proposed features work on string data, so we need at least one function,
which creates string data from a node. We define the following three functions to capture
different levels of closeness to the entity:

• String Class 1 (SC1) is the Bag of Words (BOW) (see Section 2.1.1) of all labels
and aliases of a single entity.

• String Class 2 (SC2) is the BOW of all literal values of an entity. It includes labels,
aliases, descriptions and comments.

• String Class 3 (SC3) is SC2 of the entity itself, and all its direct neighbours joined.

Table 3.2 presents SC1 and SC2 of entities of the example KG in Figure 3.1 and Table 3.3
shows the SC3s. ‘Labels’ (primary name(s)), ‘Aliases’ (secondary names) and ‘Descrip-
tions’ (descriptions or comments) are placeholders, which have to replaced with the
corresponding predicates from the KG. In the RDF schema [BG14], ‘rdfs:label’ and
‘rdfs:comment’ are the predicate values for aliases and descriptions. There is no sep-
arate predicate for a preferred label, but that does not matter for the SC values, because
we only use labels and aliases together.

Using case-insensitive bags is fine for the example, but in scientific projects, it should
be considered, because for example ‘m’ and ‘M’, which are the prefixes for 0.001 and
1,000,000 in the SI system1, are very different from each other.

The SC values for a set or list of nodes N is defined as all the BOWs of the individual
nodes combined2:

SC (N ) =
⋃
n∈N

SC(n) (3.1)

Training a model for LTR, or machine learning in general, works best, if the features
are normalized. For simplicity, we propose to use a single method for all not-already

1International System of Units
2the term frequencies for the words are added together from all source BOWs
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Entity SC3

Alice (Alice, Allie, A, cryptography, girl,
Bob, Loves, Decryption, Riddles)

Bob
(Bob, Loves, Decryption, Riddles,
Alice, Allie, A, cryptography, girl,

Elvis, The, Bat, Pitcher, of, Super, Bats)

Cesar

(Cesar, Playing, with, 2 x the, 3 x Super, 3 x Bats,
Baseball, Club, in, Texas,

David, Dave, Great, for, partying,
Elvis, Bat, Pitcher, of)

David

(David, Dave, Great, for, partying,
3 x Super, 3 x Bats, Baseball, Club, in, Texas,

Cesar, Playing, with, 2 x the,
Elvis, Bat, Pitcher, of,
3 x Friend, 1, 2, 3)

Elvis

(Elvis, 2 x The, Bat, Pitcher, of, 3 x Super, 3 x Bats,
Baseball, Club, in, Texas,

Bob, Loves, Decryption, Riddles,
Cesar, Playing, with,

David, Dave, Great, for, partying)

Super Bats

(3 x Super, 3 x Bats, 3 x Baseball, 2 x Club, in, Texas,
Organization, 2 x for, 2 x playing,

Cesar, with, 2 x the,
David, Dave, Great, partying,

Elvis, Bat, Pitcher, of)

Baseball Club (3 x Baseball, 2 x Club, Organization, for, playing,
Super, Bats, in, Texas)

Table 3.3: SC3 of entities of the example KG (see Figure 3.1).
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normalized features: the minimum (min) and maximum (max) values are used as anchor
points, and then a transform is applied. Equivalently to the min-max normalization, the
20th and 80th percentile of the values could be used, if the values follow a power-law-
, or a Gaussian distribution, or have far outliers. The values to consider for minimum,
maximum, 20th, or 80th percentile can be calculated on a per query basis3 or for the whole
training data set4. The case sensitivity consideration and the normalization method can
influence the accuracy, so it should be tested on data samples beforehand. A simple
method would be a linear transformation:

linear = value −min
max −min ∈ [0, 1] (3.2)

An alternative would be the sigmoid curve, applied after the linear normalization. It
additionally requires a curve-sharpness parameter σ.

sigmoid = 1
1 + exp−(linear−1/2)·σ (3.3)

A few, far outliers can reduce the numerical precision of the normalized values, if the
minimum and maximum values are used as anchor points. A distribution, that has most
values in [0,1], and a few outliers at huge positive and negative values would map the
entire [0,1] range to only a tiny range of values, which might even vanish completely
due to the limited floating point numbers in today’s computers. This can be shown
with Equation 3.25 while calculating value − min: when a large (absolute) and a small
(absolute) floating point number are added6, numerical precision from the smaller number
may be lost, because the relative precision is finite, and all more-significant bits from the
large number need to be kept. In the example, the number losing precision is our input.
If both anchor points are equal, a constant value like 0.5 should be used instead of NaN
(Not-a-Number, undefined), which would be the result because of the division by zero in
Equation 3.2. Otherwise, the NaN value would propagate through the neural network7

and the score would be NaN.
In the following we will discuss how to apply the techniques of Chapter 2 to a graph

environment. The results are features that, pending a normalization, can be used as
inputs to our LTR approach to derive a final, combined score and ranking.

3.1 Knowledge Graph-Based
The first group of features works on the KG as a whole. The graphs can become very
large, so caching the features is a good idea. Our selected KG-based features are all
query-independent, and try to capture either importance or popularity of entities. We
propose the in-degree of a node and the out-degree, separately averaged (see Section 1.3)
over query nodes (QN) and result nodes (RN). The in-degree and out-degree of node n is

3called ‘local’ normalization
4called ‘global’ normalization
5the formula can be written differently, e.g. as (value − (max + min)/2)/(max−min) + 0.5, where

(max + min)/2 may be zero, but the issue remains
6or subtracted
7if it works with numbers supporting NaN; e.g. IEEE 754 floating point numbers do, integers do not
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Node In-Degree Out-Degree PageRank HubScore AuthScore
Alice 1 4 0.20 0.84 0.21
Bob 2 4 0.23 0.84 0.42
Cesar 2 5 0.22 1.05 0.42
David 5 9 0.38 1.90 1.05
Elvis 3 7 0.27 1.47 0.63

Super Bats 3 3 0.26 1.00 0.63
Baseball Club 1 2 0.22 1.00 0.33

Table 3.4: KG-based features for the example graph in Figure 3.1.

Subgraph QN/RN Average
In-Degree

Average
Out-Degree

Average
PageRank

Average
HubScore

Average
AuthScore

SubC QN 2.25 4.50 0.24 1.04 0.47
SubD QN 2.25 4.50 0.24 1.04 0.47
SubE QN 2.00 3.67 0.23 1.05 0.42
SubC RN 2.00 5.00 0.22 1.05 0.42
SubD RN 5.00 9.00 0.38 1.90 1.05
SubE RN 3.00 7.00 0.27 1.47 0.63

Table 3.5: Averaged in-degree, out-degree, PageRank and HITS scores for QN and RN.

the amount of relations, where n is the object or subject respectively. All relations from
the KG are counted, not just from the subgraph. Additionally, we propose to use both
PageRank and HITS scores (see Section 2.1.3 and Section 2.1.4), averaged over query
and result nodes (see Figure 1.3) separately again. All features indicate popularity: a
high in-degree or out-degree may indicate interest of many people in the topic. High
PageRank and HITS score may indicate that better on a global scale: if the topic itself
is popular.

Table 3.4 shows the values of the five KG-based features of some entities for our
example KG (see Figure 3.1). PageRank and HITS scores were calculated using our
online tool8. The tool is open source and available in [Noa20]. No normalization was
applied, no preferences were set, and the random jump probability of PageRank was set
to 0.15. The JSON representation of the graph can be found under ‘calc/sample.json’9.

In Table 3.5, we have calculated the average of the query and result node values for
all subgraphs. The averages for the result nodes are identical to the values in Table 3.4,
because there is only one result node in each subgraph. The values for the QN for SubC
and SubD are the same, because the two groups of nodes are identical.

8https://phychi.com/pagerank
9https://github.com/AntonioNoack/WebPageRank/blob/master/calc/sample.json
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Subgraph Radius Diameter DistanceScore
SubE 2 3 1 + 1 + 2 = 4
SubC 2 4 1 + 1 + 2 + 3 = 7
SubD 2 4 1 + 1 + 2 + 3 = 7

Table 3.6: Radius, Diameter, and DistanceScore for the example subgraphs.

3.2 Subgraph-Based

The second group of features works on the subgraphs of the results. It is intended to
represent how compact the subgraph is. Our idea behind it is, that the smaller, and
denser the subgraph is, the better is the result. In the case of our example, there is
the property chain ‘is friend of’ between ‘Alice’ and the result node, which can become
arbitrarily long. A closer friend would probably be more likely the more relevant result
for ‘Alice’.

We propose three features to capture the compactness: radius, diameter (see Sec-
tion 2.1.2), and a custom distance subgraph score for the subgraph G. Our custom
distance score uses the sum of the distance from every query node q to all result nodes
r. Using the sum captures two compactnesses: the amount of nodes, and the average
distance, which both should be small. The distance score is defined as:

DistanceScore(G) =
∑
q∈QN

∑
r∈RN

Distance(q, r) (3.4)

For SubE, the DistanceScore is calculated as follows, where r is ‘Elvis’:

DistanceScore(SubE) = Distance(‘Alice‘, r) + Distance(‘Bob‘, r) + (3.5)
Distance(‘Super Bats‘, r) (3.6)

= 2 + 1 + 1 = 4 (3.7)

The structure of SubC and SubD are the same, so all scores are the same for them.
Although SubE is smaller than SubC and SubD, their radius is still the same. The
diameter shows the difference. With the idea, that more compact subgraphs are better
results, a smaller value for these features is better. If there are no logical combinations
of constraints in the query, and all variables are always distinct, the radius, diameter and
DistanceScore will unfortunately be constant. With only a few constraints, it still may
have only a small range of scores. In combination with other features, these measures
still can be useful.

Figure 3.3 shows an exemplary case, where DistanceScore delivers different results for
two cases, while radius and diameter of the two subgraphs A and B are identical. The
white nodes are query nodes and the orange node is the result node. The result from
DistanceScore is that subgraph A is more compact than subgraph B, which matches our
intuition, because in subgraph A the result node is more central.
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A

B

2 + 1 + 1 + 2 = 6

1 + 2 + 3 + 4 = 10

Subgraph DistanceScore

Figure 3.3: DistanceScore example case, where radius and diameter are the same.

3.3 TF-IDF-Based
Our first proposed features to actually capture the topic-related relevance, are TF-IDF
based approaches: they attempt to find exactly matching words like in traditional IR.
Since these approaches require no training, they can be directly used, when the know-
ledge graph was changed10 (contrary to word embeddings). By using TF-IDF (see Sec-
tion 2.1.1), we attempt to capture the importance of a word in the node’s string data11.
We propose to use the following feature ( TFScore(QN ,RN , SC ) ) for all three SC , be-
cause matches in labels may be more important than matches in arbitrary attributes, or
the description of a neighbour node.

With this feature, we want to get a metric for the matching of words between query
nodes and result nodes. For our proposed subgraph metric TFScore (Equation 3.8), we
combine the term frequency TF of term w from all query nodes QN and result nodes
RN separately. TF(B,w) is the number of occurrences of term w in the BOW B and
SN = QN ∪RN is all subgraph nodes together. For simplicity, we use the words directly
as terms. This combination from the QN and RN is then averaged over all occurring
words in those nodes. SC (SN) is the set of words occurring in the string data of SC
from all subgraph nodes SN combined.

TFScore(QN ,RN , SC ) = 1
|SC (SN )|

∑
w∈SC(SN)

IDF(w) ·

combine
(
TF

(
SC (QN ), w

)
,TF

(
SC (RN ), w

)) (3.8)

IDF(w,KG) =ln
(

|nodes(KG)|+ 1
|{n ∈ nodes(KG), w ∈ SC2(n)}|+ 1

)
(3.9)

IDF(w) is the natural logarithm of the inverse ratio of entities, whose directly con-
nected literals (SC2) contain this word. Additionally, we normalize it to avoid division by
zero. The one is added to the nominator as well, so IDF(w) always stays non-negative12.
The range of values of IDF(w) is [0,∞).

If combine(a, b) is not a linear function in a and b, then the combination of averages
(Equation 3.10) is different from TFScore(QN ,RN , SC ) (average of combinations). This
means, that a simple machine learning model, that uses a feature vector as input and

10by updates, e.g. extensions or corrections
11e.g. stopwords have no importance
12a word, which appears in all nodes, gets a negative IDF value, because ln(0 < value < 1) < 0
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outputs scores, is not flexible enough for this general task, because the amount of words
in SC (QN ) can change.

combine
(
averaged(QN , SC ), averaged(RN , SC )

)
, where

averaged(N , SC ) = 1
|SC (N )|

∑
w∈SC(N)

TF
(
SC (N ),w

)
· IDF(w) (3.10)

Therefore, we propose to either decide on a finite set of combination functions, whose
results are then used as individual features, or to train two machine learning models joint.
One model for combine(a, b), and the second for the score generation from features. A
joint loss function is then created to train the two models together. We propose to use
the minimum as a combination function, because then only matching words13 from the
query nodes and the result nodes are evaluated to non-zero.

When using SC3, the string data of direct neighbour nodes is included. This means,
that there will always be matches between the string data of query and result nodes,
because they are neighbours of each other. Additionally, artificial matches occurs, when
query and result nodes share external (not in the subgraph) neighbours. We propose to
exclude these parts of the SC3 data. For example, in SubE, ‘Bob’’s SC3 data should no
longer include ‘Elvis’’ SC3 data, because ‘Bob’ belongs to the QN and ‘Elvis’ to RN. In
Table 3.7 are the values for all entities in the three subgraph results.

If we intended our TF-IDF features to capture semantic context, we would propose to
use stemming or lemmatization to find the word families of the words. Stemming removes
endings by rules, while lemmatization uses a large dictionary to look up the word family
[MRS08]. Word embeddings are more suitable for this task, so we use TF-IDF only for
1:1 matches of words.

In our example, there are no matching terms in SC1, so those scores would be zero, and
would show no preference for any of the results. The only matching words for SC2 are ‘Su-
per’ and ‘Bats’. ‘Super’ and ‘Bats’ are part of the nodes ‘Super Bats’, ‘Cesar’ and ‘Elvis’.
Because of this, the results ‘Elvis’ and ‘Cesar’ would get the best TFScore(QN ,RN , SC2 ).

SC3(‘Cesar’/‘David’) needs to be removed from the SC3 values of SubD/SubC, be-
cause it is a neighbour of query and result nodes. In SubE, SC3(‘Cesar’) and SC3(‘David’)
need to be removed, because they appear as neighbours of ‘Elvis’ and ‘Super Bats’, which
are part of RN and QN respectively.

In Table 3.8, we have summarized the values, and chose TF to be the absolute
term frequency. To get meaningful IDF values, a KG or text corpus larger than ours
is needed. For the example, we choose IDF(Super) = 1.0, IDF(Bats) = 1.5, IDF(the) =
0.1, IDF(for) = 0.2 and IDF(playing) = 1.0. In this case, SubC has the highest
TFScore(QN ,RN , SC3 ).

13words that appear in the string data from both groups of nodes
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Subgraph Entity SC3, always-matching terms excluded

SubE Alice (Alice, Allie, A, cryptography, girl,
Bob, Loves, Decryption, Riddles)

SubE Bob (Bob, Loves, Decryption, Riddles,
Alice, Allie, A, cryptography, girl)

SubE Elvis (Elvis, The, Bat, Pitcher, of, Super, Bats)

SubE Super Bats (Super, Bats, 3 x Baseball, 2 x Club, in, Texas,
Organization, for, playing)

SubC Alice (Alice, Allie, A, cryptography, girl,
Bob, Loves, Decryption, Riddles)

SubC Bob
(Bob, Loves, Decryption, Riddles,
Alice, Allie, A, cryptography, girl,

Elvis, The, Bat, Pitcher, of, Super, Bats)

SubC Elvis
(Elvis, The, Bat, Pitcher, of, 2 x Super, 2 x Bats,

Bob, Loves, Decryption, Riddles,
Baseball, Club, in, Texas)

SubC Cesar (Cesar, Playing, with, the, Super, Bats)

SubC Super Bats

(2 x Super, 2 x Bats, 2 x Baseball, Club, in, Texas,
Elvis, the, Bat, Pitcher, of,

David, Dave, Great, 2 x for, partying,
Organization, playing)

SubD Alice (Alice, Allie, A, cryptography, girl,
Bob, Loves, Decryption, Riddles)

SubD Bob
(Bob, Loves, Decryption, Riddles,
Alice, Allie, A, cryptography, girl,

Elvis, The, Bat, Pitcher, of, Super, Bats)

SubD Elvis
(Elvis, The, Bat, Pitcher, of, 2 x Super, 2 x Bats,

Bob, Loves, Decryption, Riddles,
Baseball, Club, in, Texas)

SubD David (David, Dave, Great, for, partying,
3 x Friend, 1, 2, 3)

SubD Super Bats
(2 x Super, 2 x Bats, 3 x Baseball, Club, in, Texas,

Elvis, the, Bat, Pitcher, of,
Organization, for, playing)

Table 3.7: SC3 of entities of the example query with excluded nodes taken into account.
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Subgraph String Class TFScore
SubC SC1 0.0
SubD SC1 0.0
SubE SC1 0.0
SubC SC2 2.5 = IDF(Super) + IDF(Bats)
SubD SC2 0.0
SubE SC2 2.5 = IDF(Super) + IDF(Bats)
SubC SC3 3.6 = IDF(the) + IDF(Super) + IDF(Bats) + IDF(playing)
SubD SC3 0.2 = IDF(for)
SubE SC3 2.5 = IDF(Super) + IDF(Bats)

Table 3.8: Example TFScores for SubC, SubD and SubE.

3.4 Embedding Based
Additionally to our TF-IDF based approaches, we also want to use topic modelling to
capture the meaning of a group of nodes (see Section 2.1.5). We encode the meaning as
a vector of numbers. The basic idea is that the embeddings of closely related groups of
nodes are similar, while embeddings for unrelated groups have a greater distance. The
idea of this topic modelling is that relevant result nodes are closely related to the query
nodes. The first feature for topic modelling, we propose, is to use the cosine similarity
between an embedding of the query nodes and the result nodes.

This requires that we define an embedding of a group of nodes. For this purpose we
propose a node group embedding −−−→NGE(SC , N) of node group N14 for each string class
SC :

−→NE(SC , n) = normalize
 ∑
w∈SC(n)

−−→WE(w) · TF
(
SC (n), w

)
· IDF(w)

 (3.11)

−−−→NGE(SC , N) = 1
|N |

∑
n∈N

−→NE(SC , n) (3.12)

The node group embedding is the average of our node embedding −→NE(n). The node
embedding is a weighted linear combination of the word embeddings −−→WE(w) of the words
from SC (n). We chose TF-IDF as weight for the word w in an attempt to reflect the
relative importance of a word. The components of −−−→NGE are in [−1, 1], because of using
the average, and normalized vectors. In our proposed feature, we do not weight the
nodes in −−−→NGE , because it is meant as a topic modelling over the whole query. A possible
weighting scheme would be to use an exponential decay depending on the distance from
the query nodes to the result nodes, as in [IKIT14].

The popular word embedding Word2vec [MCCD13a, Kar18] has issues with rare
words, because from low occurrence follows uncertainty [SS15, GHT+18]. There are

14N is either QN or RN
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projects like FRequency-AGnostic word Embedding (FRAGE) [GHT+18], which try to
improve word embeddings in this case. FRAGE tries to fool the generating model into
ignoring the word frequency. In our example, we have the issue, that a lot of words are
proper names, e.g. ‘Alice’ or ‘Bob’. Using word embeddings for proper names is prob-
lematic, because many different entities can share the same name. Simply replacing all
names with one word loses information like a probability for sex15 and origin/nationality.
For example, the name ‘Albert’ has German origins and is typically given to males, so an
entity with the name ‘Albert’ has a high probability to be male, and has a relatively high
chance to be German. Keeping the proper names introduces a partially arbitrary bias,
which assigns every individual of name X the average semantic meaning of all Xs. To
avoid this issue, we propose a fourth embedding based feature, which uses an entity em-
bedding like RDF2Vec [RRN+17] instead of our node embedding. In the RDF2Vec paper,
literals are excluded, so ideally only entities, which are closely connected by relations, get
assigned a similar embedding.

To get custom word embeddings with RDF2Vec, there is already pre-trained entity
embeddings [Pau20], which can be used to accelerate the training process. Pre-trained
word embeddings exist as well, e.g. from Google [wor13].

3.5 Domain-Specific Properties
KGs or additional metadata often contain interesting properties, for example the last
time an entry was updated, the price of a certain product, or an assigned category.
These fields are always domain-specific. If users generally prefer a high/low value of a
numeric property, or a specific category, it can be useful for the ranking. If there is more
than one result node per subgraph16, we propose to use the average value as the feature.
Nodes, which do not have the property assigned, could be excluded from the average, or
given a default value.

3.5.1 Numeric Properties
The easiest type of features is numerical properties, as they theoretically can be directly
used as a feature. Boolean properties could be used as features by encoding them as
numbers, e.g. zero and one. In our example (see Figure 3.1), the search system, ‘Alice’
is using, could be a social network. There the number of contacts or friends may be
especially interesting as a separate feature, separated from the other KG-based features
in Section 3.1. Whether a movie on Amazon is free with ‘Amazon Prime’ is taken as
example in [SCP16] (value ∈ {0, 1}).

3.5.2 Categorical Properties
Categorical properties could be used as features, too, if available. Possible examples are
class membership (each class is a category), the sex of an animal, the marital status of
people, or the level of their academic degree. However, especially when some categories

15sex chromosomes, allosomes
16by multiple variables in the query
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Group Feature
KG Average In-Degree QN
KG Average In-Degree RN
KG Average Out-Degree QN
KG Average Out-Degree RN
KG Average PageRank QN
KG Average PageRank RN
KG Average HITS-Hub-Score QN
KG Average HITS-Hub-Score RN
KG Average HITS-Authority-Score QN
KG Average HITS-Authority-Score RN

Subgraph Subgraph Radius
Subgraph Subgraph Diameter
Subgraph DistanceScore
TF-IDF TFScore(QN ,RN , SC1 )
TF-IDF TFScore(QN ,RN , SC2 )
TF-IDF TFScore(QN ,RN , SC3 )

Embeddings CosineSimilarity
(−−−→NGE(SC1 ,QN ),−−−→NGE(SC1 ,RN )

)
Embeddings CosineSimilarity

(−−−→NGE(SC2 ,QN ),−−−→NGE(SC2 ,RN )
)

Embeddings CosineSimilarity
(−−−→NGE(SC3 ,QN ),−−−→NGE(SC3 ,RN )

)
Embeddings CosineSimilarity

(
1
|QN |

∑
q∈QN RDF2Vec(q), 1

|RN |
∑
r∈RN RDF2Vec(r)

)
Domain-Specific Domain-specific

Table 3.9: Overview of the proposed features.

are rare, it is hard to train these cases. In our example KG (see Figure 3.1), using the sex
as a feature from an external database17, ‘Alice’ is the only woman. Statistically, because
she is the only individual of this category, all women could be friends with ‘Bob’. If there
are only few values for a group18, a one-hot-encoding (see Section 2.1.5) can be used as a
group of features for LTR. If there are multiple result nodes in a subgraph, the average
of the one-hot-encodings could be used.

3.6 Overview

Table 3.9 summarizes the previously proposed features, where QN are the query nodes,
and RN are the result nodes.

These features are then the input-vector for the LTR network. It outputs a score19.
The result subgraphs then are sorted by their scores. To compare different models (like

17it is not included in the KG example to keep other example calculations simple
18e.g. ‘male’, ‘female’ and ‘not applicable’ for the sex of an entity
19it would be no issue to use a pair-wise or list-wise approach instead; the features stay the same
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the linear model or LambdaMART20) and parameters for a model, a metric like NDCG
can be used (see Section 2.2). When training data is available, the model can be trained,
using NDCG as a target function. The required training data is the KG and a set of
queries, results and their human-rated relevances. The results contain their subgraph
and the binding, which effectively defines whether an entity is a result node or a query
node.

3.7 Limitations
Still, all features have their limitations. Word embeddings (see Section 2.1.5) work only
on known words, so unknown21 words, called ‘Out-Of-Vocabulary words’, cannot be used
correctly, until a word embedding is created for them. This may require retraining of
many or all words, which would be expensive. There are more complex methods, which
e.g. estimate unknown words by known parts inside them [LM16]. The same is valid for
new nodes and relations in the KG as well.

The KG-based scores (see Section 3.1) need to be updated, when the KG structure is
modified. The old PageRank and HITS scores can be used as starting points for faster
convergence, because for small modifications the old scores already should be close to the
optimum.

The subgraph-based scores (see Section 3.2) often vary little, because they work solely
on the structure and often the structure of different results is similar or even the same
for a query. How much the result’s structures can differ, always depends on the query.

Our TF-IDF-based scores (see Section 3.3) partially depend on good descriptions or
string data. As described in Section 1.1, matching raw words has sometimes issues with
ambiguous words. Structural nodes for metadata, e.g. links to other databases, or notes
by users, may introduce noise with unintentional matches. If such nodes exist in the KG,
they should be removed for the algorithm.

Domain-specific features (see Section 3.5) need to be hand selected by domain experts,
which makes them not universally applicable in contrast to all others. Adding or removing
a feature in a complex model (see Section 2.3.3) is complicated and may require the whole
model to be retrained. Alternatively an ensemble could be created [KD15], which may
reduce ranking quality though22. A feature could be removed by always replacing the
input with the same value (e.g. 0.5), but this is not ideal either23 and the model should
be retrained instead.

20see Section 2.3.3
21e.g. foreign or new words
22because it is more limited
23in a non-linear model; a linear model would always create the same sub-score for this part, so it

would not matter
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Chapter 4

Conclusion and Future Work

In this Bachelor Thesis, we compared different existing approaches to rank documents
based on IR techniques, and graph metrics in Chapter 2. We then proposed a ranking
system based on LTR in Chapter 3. In this system, multiple features are combined by
a non-linear system to create a better scoring function. We proposed several features,
which we consider to be useful for a relevance reflecting ranking. There are two points,
which need to be tested to achieve best results, when training data is available: the
normalization method and whether the normalization should be done on a per query
basis.

In the future, there are two obvious tasks: to collect a large amount of high qual-
ity training data, and to implement the LTR system with our proposed features (see
Chapter 3). For evaluation, NDCG (see Section 2.2) could be used. Then feature selec-
tion may be conducted, if it is needed for performance reasons.

We already proposed to use numerical features, but for future work, a more complex
system could be created for numerical literal values, which may match user-defined con-
ditions like larger than, smaller than, and which is able to work with different units for
users of imperial or USCS units. These constraints could be soft constraints and addi-
tionally given importance by the searcher, which then would be needed to be included in
our ranking.

Another topic for future work is to include user interests to improve their satisfaction.
These interests could be extracted from their search history, or be given explicitly by the
user itself. Features based on these preferences then could be added to the LTR model.
However, the training data needs to include user data as well. The user could additionally
give significance-indications to specific parts of the query graph. These weights could be
then included in the weighting for the node group embeddings (see Section 3.4).
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